Alpha-Lipoic Acid Can Overcome The Reduced Developmental Competency Induced by Alcohol Toxicity during Ovine Oocyte Maturation

硫辛酸可克服绵羊卵母细胞成熟过程中酒精毒性引起的发育能力下降

阅读:7
作者:Ali Moghimi Khorasgani, Reza Moradi, Farnoosh Jafarpour, Faezeh Ghazvinizadehgan, Somayyeh Ostadhosseini, Alireza Heydarnezhad, Ali Akbar Fouladi-Nashta, Mohammad Hossein Nasr-Esfahani

Conclusion

The current findings demonstrate that ALA can diminish the effect of ethanol, possibly by decreasing the ROS level and increasing Thiolcontent during oocyte maturation. Using the ALA supplement may have implications in protecting oocytes from alcohol toxicity in affected patients.

Methods

In this experimental study, to assess the antioxidant capacity of ALA challenged by 1% ethanol during in vitro maturation, immature ovine oocytes were exposed to 1% alcohol in the presence or absence of 25 μM ALA during oocyte maturation. The cumulus expansion index, intracellular reactive oxygen species (ROS), and thiol content levels were assessed in matured oocytes of various treatment groups. Consequently, the blastocyst formation rate of matured oocytes in various treatment groups were assessed. In addition, total cell number (TCN), cell allocation, DNA fragmentation, and relative gene expression of interested genes were assessed in resultant blastocysts.

Objective

Alpha-lipoic acid (ALA) as a strong antioxidant has a protective effect. This study was designed to assess whether supplementation of maturation medium with ALA during in vitro maturation (IVM) can attenuate the toxic effect of ethanol. Materials and

Results

The results revealed that alcohol significantly reduced cumulus cells (CCs) expansion index and blastocyst yield and rate of apoptosis in resultant embryos. Addition of 25 μM ALA to 1% ethanol during oocyte maturation decreased ROS level and elevated Thiolcontent. Furthermore, supplementation of maturation medium with ALA attenuated the effect of 1% ethanol and significantly increased the blastocyst formation and hatching rate as compared to control and ethanol groups. In addition, the quality of blastocysts produced in ALA+ethanol was improved based on the low number of TUNEL positive cells, the increased expression level of mRNA for pluripotency, and anti-oxidant markers, and decreased expression of apoptotic genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。