Evaluation of cell damage induced by irradiated Zinc-Phthalocyanine-gold dendrimeric nanoparticles in a breast cancer cell line

评估辐照锌酞菁金树枝状纳米粒子对乳腺癌细胞系造成的细胞损伤

阅读:5
作者:Ivan Mfouo-Tynga, Nicolette Nadene Houreld, Heidi Abrahamse

Background

Cancer is a non-communicable disease that occurs following a mutation in the genes which control cell growth. Breast cancer is the most diagnosed cancer among South African women and a major cause of cancer-related deaths worldwide. Photodynamic therapy (PDT) is an alternative cancer therapy that uses photochemotherapeutic agents, known as photosensitizers. Drug-delivery nanoparticles are commonly used in nanomedicine to enhance drug-therapeutic efficiency. This study evaluated the photodynamic effects following treatment with 0.3 μM multiple particles delivery complex (MPDC) and irradiated with a laser fluence of 10 J/cm2 using a 680 nm diode laser in a breast cancer cell line (MCF-7).

Conclusion

The MPDC yielded a successful and stable hybrid agent with potent photodynamic abilities.

Methods

Cell damage was assessed by inverted light microscopy for cell morphology; the Apoptox-Glo triple assay was used for cell viability, caspase activity and identification of cytodamage markers; flow cytometric analysis for cell death pathways and mitochondrial membrane potential; the enzyme linked immunosorbent assay (ELISA) for cytochrome C release; and real-time reverse transcriptase polymerase chain reaction (RT-PCR) array for gene expression.

Results

Laser activated-MPDC induced a significant change in morphology of PDT-treated cells, with the appearance of apoptotic like morphological features. An increase in cytotoxicity, caspase activity, cell depolarization and cytochrome C release were identified in PDT-treated cells. Finally, the upregulation of BAX, BCL-2, CASP-2 and ULK-1 genes was observed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。