In vitro rejuvenation of brain mitochondria by the inhibition of actin polymerization

通过抑制肌动蛋白聚合体外恢复脑线粒体活力

阅读:8
作者:Kazuhide Takahashi, Yuri Miura, Ikuroh Ohsawa, Takuji Shirasawa, Mayumi Takahashi

Abstract

The oxygen consumption rate (OCR) and cytochrome c oxidase (CcO) activity of respiratory complex IV (CIV) in brain mitochondria significantly decline in middle-aged male mice compared to younger male mice. To explore the mechanisms underlying the regulation of brain mitochondrial function, we examined CIV-associated proteins, and identified actin inside the isolated brain mitochondria. Inhibiting actin polymerization using cytochalasin B (CB) significantly enhanced the OCR and CcO activity of CIV in the mitochondria. These changes were accompanied by a significant reduction in the amount of CIV-bound cytochrome c (cyt c). Actin was also associated with respiratory complex III (CIII); however, the amount of CIII-bound cyt c increased significantly after treatment of the mitochondria with CB. In contrast, no significant alteration in the assembly or the CcO activity of CIV in CIV-containing supercomplexes or CIV monomers was induced by CB. These results suggest that mitochondrial actin plays a crucial role in the regulation of the CcO activity and OCR of CIV with modification of the retention of cyt c between CIV and CIII.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。