Magnetic Susceptibility Source Separation Solely from Gradient Echo Data: Histological Validation

仅从梯度回波数据进行磁化率源分离:组织学验证

阅读:13
作者:Alexey V Dimov, Kelly M Gillen, Thanh D Nguyen, Jerry Kang, Ria Sharma, David Pitt, Susan A Gauthier, Yi Wang

Abstract

Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g., myelin and iron) that contribute constructively to R2* value but destructively to the QSM value of a voxel. This R2*QSM technique is validated against quantitative histology—optical density of myelin basic protein and Perls’ iron histological stains of rim and core of 10 ex vivo multiple sclerosis lesions, as well as neighboring normal appearing white matter. We found that R2*QSM source maps are in good qualitative agreement with histology, e.g., showing increased iron concentration at the edge of the rim+ lesions and myelin loss in the lesions’ core. Furthermore, our results indicate statistically significant correlation between paramagnetic and diamagnetic tissue components estimated with R2*QSM and optical densities of Perls’ and MPB stains. These findings provide direct support for the use of R2*QSM magnetic source separation based solely on GRE complex data to characterize MS lesion composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。