Alternative pathway for dopamine production by acetogenic gut bacteria that O-Demethylate 3-Methoxytyramine, a metabolite of catechol O-Methyltransferase

产乙酸肠道细菌产生多巴胺的替代途径,该细菌对 3-甲氧基酪胺进行 O-脱甲基化,3-甲氧基酪胺是儿茶酚 O-甲基转移酶的代谢物

阅读:5
作者:Barry E Rich, Jayme C Jackson, Lizett Ortiz de Ora, Zane G Long, Kylie S Uyeda, Elizabeth N Bess

Aims

The gut microbiota modulates dopamine levels in vivo, but the bacteria and biochemical processes responsible remain incompletely characterized. A potential precursor of bacterial dopamine production is 3-methoxytyramine (3MT); 3MT is produced when dopamine is O-methylated by host catechol O-methyltransferase (COMT), thereby attenuating dopamine levels. This study aimed to identify whether gut bacteria are capable of reverting 3MT to dopamine.

Conclusions

Gut bacterial acetogens E. limosum and B. producta synthesized dopamine from 3MT. This O-demethylation of 3MT was likely performed by cobalamin-dependent O-demethylases implicated in reductive acetogenesis. Significance and impact of the study: This is the first report that gut bacteria can synthesize dopamine by O-demethylation of 3MT. Owing to 3MT being the product of host COMT attenuating dopamine levels, gut bacteria that reverse this transformation-converting 3MT to dopamine-may act as a counterbalance for dopamine regulation by COMT.

Results

Human faecal bacterial communities O-demethylated 3MT and yielded dopamine. Gut bacteria that mediate this transformation were identified as acetogens Eubacterium limosum and Blautia producta. Upon exposing these acetogens to propyl iodide, a known inhibitor of cobalamin-dependent O-demethylases, 3MT O-demethylation was inhibited. Culturing E. limosum and B. producta with 3MT afforded increased acetate levels as compared with vehicle controls. Conclusions: Gut bacterial acetogens E. limosum and B. producta synthesized dopamine from 3MT. This O-demethylation of 3MT was likely performed by cobalamin-dependent O-demethylases implicated in reductive acetogenesis. Significance and impact of the study: This is the first report that gut bacteria can synthesize dopamine by O-demethylation of 3MT. Owing to 3MT being the product of host COMT attenuating dopamine levels, gut bacteria that reverse this transformation-converting 3MT to dopamine-may act as a counterbalance for dopamine regulation by COMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。