Alternol triggers immunogenic cell death via reactive oxygen species generation

Alternol 通过活性氧生成引发免疫原性细胞死亡

阅读:4
作者:Changlin Li, Ying Zhang, Siyuan Yan, Guoan Zhang, Wei Wei, Zhi Qi, Benyi Li

Abstract

Alternol is a naturally occurring compound that exerts antitumor activity in several cancers. However, whether Alternol induces antitumor immune response remains unknown. In this study, we investigated whether Alternol induced immunogenic cell death (ICD) in prostate cancer cells. Alternol triggered ICD in prostate cancer cells, as evidenced by the release of damage-associated molecular patterns (DAMPs) (i.e., calreticulin, CALR; high mobility group protein B1, HMGB1; and adenosine triphosphate, ATP) and pro-inflammatory cytokine (i.e., interleukin [IL]-1α, IL-1β, IL-6, and IL-8) expression. Alternol facilitated tumor-associated antigen uptake and cross-presentation, CD8 + T-cell priming, and T-cell infiltration in tumor-draining lymph nodes (LNs) and tumors. The presence of Alternol fostered antitumor immune response in vivo, resulting in delayed tumor growth and prolonged survival. Moreover, inhibition of reactive oxygen species (ROS) generation blocked Alternol-induced upregulation of pre-inflammation cytokines, endoplasmic reticulum (ER) stress, and consequent antitumor immune response. Overall, our data indicate that Alternol triggers ICD in prostate cancer cells, which is mediated by ROS generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。