Transplantation of reprogrammed peripheral blood cells differentiates into retinal ganglion cells in the mouse eye with NMDA-induced injury

重编程外周血细胞移植到 NMDA 诱导损伤的小鼠眼中可分化为视网膜神经节细胞

阅读:6
作者:Xuezhi Zhou, Yuhua Rui, Jingjie Peng, Yujue Wang, Ye He, Chao Wang, Manjuan Peng, Xuan Zhang, Xiaobo Xia, Weitao Song

Abstract

The generation of patient-specific induced pluripotent stem cells (iPSCs) holds significant implications for replacement therapy in treating optic neuropathies such as glaucoma. Stem-cell-based therapy targeted at replacing and replenishing retinal ganglion cells is progressing at a fast pace. However, clinical application necessitates an efficient and robust approach for cell manufacturing. Here, we examine whether the embryo body derived from human peripheral blood-derived iPSC can localize into the host retina and differentiate into retinal ganglion cells after transplantation into a glaucoma injury model. Human peripheral blood T cells were isolated and reprogrammed into an induced pluripotent stem cell (TiPSC) line using Sendai virus transduction carrying transcription factors Sox2, Klf4, c-Myc, and Oct4. TiPSCs were differentiated into RGC using neural basal culture. For in vivo studies, embryo bodies derived from TiPSCs (TiPSC-EB) were injected into the vitreous cavity of N-Methyl-d-aspartic acid (NMDA)-treated mice 2 weeks before sacrifice and retinal dissection. Induced pluripotent stem cells generated from human peripheral blood T cells display stem cell morphology and pluripotency markers. Furthermore, RGC-like cells differentiated from TiPSC exhibit extending axons and RGC marker TUJ1. When transplanted intravitreally into NMDA-treated mice, embryo bodies derived from TiPSC survived, migrated, and incorporated into the retina's GCL layer. In addition, TiPSC-EB transplants were able to differentiate into TUJ1 positive RGC-like cells. Retinal ganglion cells can be differentiated using human peripheral blood cells derived iPSC. Transplantation of embryo body derived from TiPSCs into a glaucoma mouse model could incorporate into host GCL and differentiate into RGC-like cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。