Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress

利用温度和运动对急性应激的反应来分离 GABAA 能药物的抗焦虑和镇静作用

阅读:3
作者:Christiaan H Vinkers, Marianne Klanker, Lucianne Groenink, S Mechiel Korte, James M Cook, Michael L Van Linn, Seth C Hopkins, Berend Olivier

Conclusions

The present study confirms a putative role for the GABA(A) receptor alpha(1) subunit in hypothermia and sedation and supports a role for alpha(2/3) subunit GABA(A) receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABA(A)ergic compounds.

Results

Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABA(A) receptor agonist diazepam as well as the alpha(3) subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABA(A) receptor alpha(1)-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABA(A) receptor alpha(1)-selective antagonist betaCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the alpha(1) subunit in thermoregulation and sedation. Ligands of extrasynaptic GABA(A) receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions: The present study confirms a putative role for the GABA(A) receptor alpha(1) subunit in hypothermia and sedation and supports a role for alpha(2/3) subunit GABA(A) receptor agonists in anxiety processes. In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。