Integrated analysis of multimodal single-cell data

多模态单细胞数据的综合分析

阅读:3
作者:Yuhan Hao ,Stephanie Hao ,Erica Andersen-Nissen ,William M Mauck 3rd ,Shiwei Zheng ,Andrew Butler ,Maddie J Lee ,Aaron J Wilk ,Charlotte Darby ,Michael Zager ,Paul Hoffman ,Marlon Stoeckius ,Efthymia Papalexi ,Eleni P Mimitou ,Jaison Jain ,Avi Srivastava ,Tim Stuart ,Lamar M Fleming ,Bertrand Yeung ,Angela J Rogers ,Juliana M McElrath ,Catherine A Blish ,Raphael Gottardo ,Peter Smibert ,Rahul Satija

Abstract

The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。