Genetic Ablation of Na,K-ATPase α4 Results in Sperm Energetic Defects

Na,K-ATPase α4 基因消融导致精子能量缺陷

阅读:5
作者:September Numata, Jeffrey P McDermott, Gustavo Blanco

Abstract

The Na,K-ATPase alpha 4 isoform (NKAα4) is expressed specifically in the male germ cells of the testes and is particularly abundant in mature spermatozoa. Genetic deletion of NKAα4 in mice (NKAα4 KO mice) results in complete infertility of male, but not female mice. The reduced fecundity of NKAα4 KO male mice is due to a series of defects, including a severe impairment in total and hyperactive sperm motility. In this work, we show that deletion of NKAα4 also leads to major defects in sperm metabolism and energetics. Thus, compared to wild-type sperm, sperm from NKAα4 KO mice display a significant reduction in the extracellular acidification rate (ECAR), indicative of impaired glycolytic flux. In addition, mitochondrial function is disrupted in sperm lacking NKAα4, as indicated by a reduction in the mitochondrial membrane potential and lower oxygen consumption rate (OCR). Moreover, the ratio between the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD/NADH) is increased in NKAα4 KO sperm, indicating a shift in the cellular redox state. These metabolic changes are associated with augmented reactive oxygen species (ROS) production and increased lipid peroxidation in NKAα4 KO sperm. Altogether, these findings reveal a novel link between NKAα4 activity and sperm energetics, highlighting the essential role of this ion transporter in sperm physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。