Conclusion
miR-32 is an important checkpoint for lipogenesis in the liver, and targeting miR-32 could be a promising therapeutic approach for NAFLD treatment.
Results
A marked increase in miR-32 expression was observed in liver samples from patients and mice with NAFLD, as well as in palmitate-induced hepatocytes. Hepatocyte-specific miR-32 knockout (miR-32-HKO) dramatically ameliorated hepatic steatosis and metabolic disorders in high-fat diet-fed mice. Conversely, hepatic miR-32 overexpression markedly exacerbated the progression of these abnormalities. Further, combinational analysis of transcriptomics and lipidomics suggested that miR-32 was a key trigger for de novo lipogenesis in the liver. Mechanistically, RNA sequencing, luciferase assay and adenovirus-mediated downstream gene rescue assay demonstrated that miR-32 directly bound to insulin-induced gene 1 (INSIG1) and subsequently activated sterol regulatory element binding protein-mediated lipogenic gene programs, thereby promoting hepatic lipid accumulation and metabolic disorders. Notably, pharmacological administration of miR-32 antagonist significantly inhibited palmitate-induced triglyceride deposition in hepatocytes and markedly mitigated hepatic steatosis and metabolic abnormalities in obesity-associated NAFLD mice.
