Advanced oxidation protein products induce apoptosis, and upregulate sclerostin and RANKL expression, in osteocytic MLO-Y4 cells via JNK/p38 MAPK activation

晚期氧化蛋白产物通过 JNK/p38 MAPK 激活诱导骨细胞 MLO-Y4 细胞凋亡,并上调硬化蛋白和 RANKL 表达

阅读:17
作者:Chaoqun Yu, Dong Huang, Kunyuan Wang, Bochuan Lin, Yuanhang Liu, Songbo Liu, Weichi Wu, Huiru Zhang

Abstract

Advanced oxidation protein products (AOPPs) are recognized as novel markers of oxidative stress and contribute to various medical conditions, which are associated with secondary osteoporosis. However, little is currently known regarding the role of AOPPs in the development of secondary osteoporosis. As the commander cells of bone remodeling, osteocytes are involved in the pathogenesis of osteoporosis. The present study aimed to determine the cytotoxic mechanisms of AOPPs on osteocytic MLO‑Y4 cells. The results demonstrated that treatment with AOPPs significantly triggered apoptosis of MLO‑Y4 cells, in a dose‑ and time‑dependent manner. Furthermore, exposure to AOPPs induced phosphorylation of c‑Jun N‑terminal kinases (JNK) and p38 mitogen‑activated protein kinases (MAPK). Conversely, N‑acetylcysteine inhibited the activation of JNK and p38 MAPK, thus suggesting that the AOPPs‑induced activation of JNK/p38 MAPK is reactive oxygen species (ROS)‑dependent. In addition, SB203580 and SP600125 suppressed apoptosis, but did not affect ROS production, following AOPPs treatment. Notably, AOPPs also induced a significant upregulation in the expression levels of sclerostin and receptor activator of nuclear factor kappa‑B ligand (RANKL) in a JNK/p38 MAPK-dependent manner. These findings provide novel insights into the molecular mechanisms underlying AOPPs‑mediated cell death, and suggest that modulation of apoptotic pathways via the MAPK signaling cascade may be considered a therapeutic strategy for the prevention and treatment of secondary osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。