Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to primary follicle transition

Gremlin 1 和 Gremlin 2 在调节卵巢原始卵泡向初级卵泡转变中的作用

阅读:4
作者:Eric E Nilsson, Ginger Larsen, Michael K Skinner

Abstract

A network of extracellular signaling factors has previously been shown to act in concert to control the ovarian primordial to primary follicle transition. The current study was designed to investigate the roles of the endogenous bone morphogenetic protein (BMP) inhibitors Gremlin 1 (GREM1) and GREM2 in primordial follicle transition in the rat ovary. GREM1 and GREM2 treatments were found to reverse the effects of anti-Müllerian hormone (AMH) to inhibit follicle transition in a whole-ovary culture system. GREM1 reversed the effect of BMP4 to stimulate primordial follicle transition. Immunohistochemical studies showed that GREM2, but not GREM1, was present in primordial follicles suggesting that GREM2 may regulate primordial follicle transition in vivo. Co-immunoprecipitation studies indicated that GREM2 directly binds to AMH, as well as to BMP4. Transcriptome analyses of ovaries treated with GREM2 or GREM1 yielded negligible numbers of differentially expressed genes, suggesting that the immediate effects of GREM2 or GREM1 appear to be at the level of protein-protein interactions, rather than direct actions on the cells. A number of other ovarian growth factors were found to influence the expression of Grem2. Observations suggest that Grem2 is a part of the signaling network of growth factors that regulate the primordial to primary follicle transition. Insights into the regulatory networks affecting the pool of primordial follicles are important to understand the molecular basis for reproductive diseases such as primary ovarian insufficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。