Interleukin-6 and Interleukin-8 Regulate STAT3 Activation Migration/Invasion and EMT in Chrysophanol-Treated Oral Cancer Cell Lines

白细胞介素 6 和白细胞介素 8 调节大黄酚治疗的口腔癌细胞系中的 STAT3 激活迁移/侵袭和 EMT

阅读:6
作者:Po-Chih Hsu, Yi-Hsuan Chen, Ching-Feng Cheng, Chan-Yen Kuo, Huey-Kang Sytwu

Abstract

The tumor microenvironment plays a critical role in the control of metastasis. The epithelial-mesenchymal transition (EMT) is strongly associated with tumor metastasis, and consists of several protein markers, including E-cadherin and vimentin. We discovered that chrysophanol causes oral cancer cell apoptosis and the inhibition of migration/invasion and EMT. However, the detailed mechanisms of chrysophanol and its role in oral cancer with respect to the tumor microenvironment remain unknown. In the clinic, proinflammatory cytokines, such as IL-6 and IL-8, exhibit a higher expression in patients with oral cancer. However, the effect of chrysophanol on the production of IL-6 and IL-8 is unknown. We evaluated the expression of IL-6 and IL-8 in human SAS and FaDu oral cancer cell lines in the presence or absence of chrysophanol. The migration and invasion abilities were also determined using a Boyden chamber assay. Our results showed that treatment with chrysophanol significantly decreased the expression of IL-6 and IL-8, as well as the invasion ability of oral cancer cells. Moreover, chrysophanol also attenuated the EMT by increasing the expression of E-cadherin and reducing the expression of vimentin. Mechanistically, chrysophanol inhibited IL-6- and IL-8-induced invasion and STAT3 phosphorylation. IL-6 and IL-8 promote EMT and cell invasion, which is potentially related to the STAT3 signaling pathway in oral cancer. These findings provide insight into new aspects of chrysophanol activity and may contribute to the development of new therapeutic strategies for oral cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。