N-Cadherin Regulates GluA1-Mediated Depressive-Like Behavior in Adolescent Female Rat Offspring following Prenatal Stress

N-钙粘蛋白调节产前应激后青春期雌性大鼠后代的 GluA1 介导的抑郁样行为

阅读:6
作者:Shuya Shao, Dan Yao, Senya Li, Jing Li, Yufang Si, Huiping Zhang, Zhongliang Zhu, Dongli Song, Hui Li

Background

The incidence of depression is twice higher in women than in men, and gender differences in the prevalence rates first emerge around puberty. Prenatal stress (PS) induces gender-dependent depressive-like behavior in adolescent offspring, but the neuro-physiological mechanisms remain unclear. Our study aimed to investigate the possible neuro-physiological mechanisms of gender-dependent depressive-like behavior in PS adolescent offspring and further explored the possibility of treating depression in adolescent female rats.

Conclusion

The gender-dependent expression of N-cadherin-GluA1 pathway in adolescent offspring in the dentate gyrus was the key factor in gender differences of depressive-like behavior following PS.

Methods

The pregnant rats were exposed to restraint stress in the third trimester for 7 days. The depressive-like behavior and the expression of N-cadherin and AMPARs in the hippocampus of adolescent offspring rats were assessed. 10 mg/kg AMPAR antagonist CNQX and 10 mg/kg N-cadherin antagonist ADH-1 were intraperitoneally injected into female adolescent offspring, respectively; 0.2 µg AMPAR agonist CX546 was administered to the dentate gyrus of male adolescent offspring to determine the role of N-cadherin-AMPARs in depressive-like behavior of the offspring following PS.

Results

We found that PS increased N-cadherin expression, which upregulated GluA1 expression in the dentate gyrus, mediating depressive-like behavior in adolescent female rat offspring by reducing PSD-95. In addition, ADH-1 and CNQX improved depressive-like behavior in adolescent female offspring following PS. Furthermore, injection of the CX546 into the dentate gyrus induced depressive-like behavior in PS male offspring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。