Localization of multiple DNAzymes as a branchedzyme-powered nanodevice for the immunoassay of tumor biomarkers

多种 DNA 酶的定位作为支链酶驱动的纳米装置用于肿瘤生物标志物的免疫测定

阅读:13
作者:Yanwen Jin, Zhuochun Huang, Bingyan Xu, Junbo Chen

Abstract

Traditional immunoassay methods often face challenges due to the labeling procedure of protein enzymes, the use of multiple antibodies, and severe conditions. To address these limitations, we propose the concept of incorporating branchedzyme-powered nanodevices into immunoassays. In this strategy, multiple DNAzymes are localized onto gold nanoparticles (AuNPs) along with substrates. The localization format facilitates intramolecular reactions between DNAzymes and substrates, leading to accelerated kinetics of the nanodevice. Upon the formation of an immunocomplex with an antibody on a 96-well plate, the branchedzyme-powered nanodevice catalytically releases multiple fluorescent signals under ambient temperature, eliminating the need for secondary antibodies. The branched DNAzymes exhibit catalytic properties similar to those of protein enzymes, thus simplifying the assay procedure and achieving isothermal detection. Furthermore, the detection process can be controlled by the addition or deletion of cofactors. Additionally, the affinity ligand can be easily modified to construct nanodevices specific to different targets without requiring extensive redesign. This strategy has demonstrated successful quantification of tumor biomarkers such as alpha-fetoprotein (AFP) and prostate-specific antigen (PSA) at subpicomolar concentrations, showcasing its suitability for clinical applications. Consequently, the branchedzyme-powered nanodevice represents a valuable addition to the immunoassay toolbox, opening new possibilities for clinical diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。