Breathing on chip: Dynamic flow and stretch accelerate mucociliary maturation of airway epithelium in vitro

芯片上的呼吸:动态流动和拉伸加速气道上皮粘膜纤毛的体外成熟

阅读:5
作者:Janna C Nawroth, Doris Roth, Annemarie van Schadewijk, Abilash Ravi, Tengku Ibrahim Maulana, Christiana N Senger, Sander van Riet, Dennis K Ninaber, Amy M de Waal, Dorothea Kraft, Pieter S Hiemstra, Amy L Ryan, Anne M van der Does

Abstract

Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。