Copper-Doped Biphasic Calcium Phosphate Powders: Dopant Release, Cytotoxicity and Antibacterial Properties

铜掺杂双相磷酸钙粉末:掺杂剂释放、细胞毒性和抗菌性能

阅读:5
作者:Aurélie Jacobs, Guillaume Renaudin, Nicolas Charbonnel, Jean-Marie Nedelec, Christiane Forestier, Stéphane Descamps

Abstract

Cytotoxicity and antibacterial properties associated with the dopant release of Cu-doped Biphasic Calcium Phosphate (BCP) powders, mainly composed of hydroxyapatite mixed with β-tricalcium phosphate powders, were investigated. Twelve BCP ceramics were synthesized at three different sintering temperatures (600 °C, 900 °C and 1200 °C) and four copper doping rates (x = 0.0, 0.05, 0.10 and 0.20, corresponding to the stoichiometric amount of copper in Ca10Cux(PO4)6(OH)2-2xO2x). Cytotoxicity assessments of Cu-doped BCP powders, using MTT assay with human-Mesenchymal Stem Cells (h-MSCs), indicated no cytotoxicity and the release of less than 12 ppm of copper into the biological medium. The antibacterial activity of the powders was determined against both Gram-positive (methicillin-sensitive (MS) and methicillin resistant (MR) Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The Cu-doped biomaterials exhibited a strong antibacterial activity against MSSA, MRSA and E. coli, releasing approximatively 2.5 ppm after 24 h, whereas 10 ppm were required to induce an antibacterial effect against P. aeruginosa. This study also demonstrated that the culture medium used during experiments can directly impact the antibacterial effect observed; only 4 ppm of Cu2+ were effective for killing all the bacteria in a 1:500 diluted TS medium, whereas 20 ppm were necessary to achieve the same result in a rich, non-diluted standard marrow cell culture medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。