Statistical Based Bioprocess Design for Improved Production of Amylase from Halophilic Bacillus sp. H7 Isolated from Marine Water

基于统计的生物工艺设计,以提高从海水中分离的嗜盐芽孢杆菌 H7 的淀粉酶产量

阅读:6
作者:J N Bandal, V A Tile, R Z Sayyed, H P Jadhav, N I Wan Azelee, Subhan Danish, Rahul Datta

Abstract

Amylase (EC 3.2.1.1) enzyme has gained tremendous demand in various industries, including wastewater treatment, bioremediation and nano-biotechnology. This compels the availability of enzyme in greater yields that can be achieved by employing potential amylase-producing cultures and statistical optimization. The use of Plackett-Burman design (PBD) that evaluates various medium components and having two-level factorial designs help to determine the factor and its level to increase the yield of product. In the present work, we are reporting the screening of amylase-producing marine bacterial strain identified as Bacillus sp. H7 by 16S rRNA. The use of two-stage statistical optimization, i.e., PBD and response surface methodology (RSM), using central composite design (CCD) further improved the production of amylase. A 1.31-fold increase in amylase production was evident using a 5.0 L laboratory-scale bioreactor. Statistical optimization gives the exact idea of variables that influence the production of enzymes, and hence, the statistical approach offers the best way to optimize the bioprocess. The high catalytic efficiency (kcat/Km) of amylase from Bacillus sp. H7 on soluble starch was estimated to be 13.73 mL/s/mg.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。