Roxadustat Does Not Affect Platelet Production, Activation, and Thrombosis Formation

罗沙司他不影响血小板生成、活化和血栓形成

阅读:1
作者:Jiaxin Zhao # ,Yanyan Xu # ,Jingyuan Xie ,Junling Liu ,Ruiyan Zhang ,Xiaoxiang Yan

Abstract

Objective: Roxadustat is a new medication for the treatment of renal anemia. EPO (erythropoietin)-the current treatment standard-has been reported to enhance platelet activation and production. However, to date, the effect of roxadustat on platelets is unclear. To address this deficiency, herein, we have evaluated the effect of roxadustat on platelet production and function. Approach and Results: We performed several mouse platelet functional assays in the presence/absence of in vitro and in vivo roxadustat treatment. Both healthy and 5/6 nephrectomized mice were utilized. The effect of roxadustat on platelet function of healthy volunteers and chronic kidney disease patients was also evaluated. For platelet production, megakaryocyte maturation and proplatelet formation were assayed in vitro. Peripheral platelet and bone marrow megakaryocyte counts were also determined. We found that roxadustat could not stimulate washed platelets directly, and platelet aggregation, spreading, clot retraction, and P-selectin/JON/A exposure were similar with or without in vitro or in vivo roxadustat treatment among both healthy and 5/6 nephrectomized mice. In vivo mouse thrombosis models were additionally performed, and no differences were detected between the vehicle and roxadustat treatment groups. EPO, which was considered a positive control in the present study, promoted platelet function and production as reported previously. Megakaryocyte maturation and proplatelet formation were also not significantly different between control mice and those treated with roxadustat. After receiving roxadustat for 14 days, no difference in the peripheral platelet count was observed in the mice. Conclusions: Administration of roxadustat has no significant impact on platelet production and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。