Role of Interleukin 32 in Human Immunodeficiency Virus Reactivation and Its Link to Human Immunodeficiency Virus-Herpes Simplex Virus Coinfection

白细胞介素 32 在人类免疫缺陷病毒再激活中的作用及其与人类免疫缺陷病毒-单纯疱疹病毒合并感染的关系

阅读:5
作者:Pedro M M Mesquita, Paula Preston-Hurlburt, Marla J Keller, Nalini Vudattu, Lilia Espinoza, Michelle Altrich, Kathryn Anastos, Kevan C Herold, Betsy C Herold

Background

Herpes simplex virus type 2 (HSV-2; herpes) exacerbates human immunodeficiency virus type 1 (HIV) by unclear mechanisms. These studies tested the impact of HSV-2 on systemic T-cells and HIV reservoirs.

Conclusions

Herpes is associated with phenotypic changes in CD4+ T-cells, including a decrease in IL-32, which may contribute to increased HIV reservoirs. Blocking IL-32 may facilitate HIV reactivation to improve shock and kill strategies.

Methods

Peripheral blood mononuclear cells from HIV-infected women on antiretroviral therapy who were HSV-2 seropositive or seronegative and HIV-uninfected controls were analyzed by flow cytometry. Cell-associated HIV DNA and RNA were quantified in the absence or presence of activating stimuli, recombinant interleukin 32γ (IL-32γ), and a RUNX1 inhibitor. RNA was assessed by nanostring.

Results

CD4, but not CD8, T-cell phenotypes differed in HIV+/HSV-2+ versus HIV+/HSV-2- (overall P = .002) with increased frequency of CCR5+, CXCR4+, PD-1+, and CD69+ and decreased frequency of CCR10+ and CCR6+ T-cells. The changes were associated with higher HIV DNA. Paradoxically, IL-32, a proinflammatory cytokine, was lower in subpopulations of CD4+ T-cells in HSV-2+ versus HSV-2- women. Recombinant IL-32γ blocked HIV reactivation in CD4+ T-cells and was associated with an increase in RUNX1 expression; the blockade was overcome by a RUNX1 inhibitor. Conclusions: Herpes is associated with phenotypic changes in CD4+ T-cells, including a decrease in IL-32, which may contribute to increased HIV reservoirs. Blocking IL-32 may facilitate HIV reactivation to improve shock and kill strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。