Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring

树鼩精原干细胞体外长期增殖及成功产生转基因后代

阅读:7
作者:Chao-Hui Li, Lan-Zhen Yan, Wen-Zan Ban, Qiu Tu, Yong Wu, Lin Wang, Rui Bi, Shuang Ji, Yu-Hua Ma, Wen-Hui Nie, Long-Bao Lv, Yong-Gang Yao, Xu-Dong Zhao, Ping Zheng

Abstract

Tree shrews have a close relationship to primates and have many advantages over rodents in biomedical research. However, the lack of gene manipulation methods has hindered the wider use of this animal. Spermatogonial stem cells (SSCs) have been successfully expanded in culture to permit sophisticated gene editing in the mouse and rat. Here, we describe a culture system for the long-term expansion of tree shrew SSCs without the loss of stem cell properties. In our study, thymus cell antigen 1 was used to enrich tree shrew SSCs. RNA-sequencing analysis revealed that the Wnt/β-catenin signaling pathway was active in undifferentiated SSCs, but was downregulated upon the initiation of SSC differentiation. Exposure of tree shrew primary SSCs to recombinant Wnt3a protein during the initial passages of culture enhanced the survival of SSCs. Use of tree shrew Sertoli cells, but not mouse embryonic fibroblasts, as feeder was found to be necessary for tree shrew SSC proliferation, leading to a robust cell expansion and long-term culture. The expanded tree shrew SSCs were transfected with enhanced green fluorescent protein (EGFP)-expressing lentiviral vectors. After transplantation into sterilized adult male tree shrew's testes, the EGFP-tagged SSCs were able to restore spermatogenesis and successfully generate transgenic offspring. Moreover, these SSCs were suitable for the CRISPR/Cas9-mediated gene modification. The development of a culture system to expand tree shrew SSCs in combination with a gene editing approach paves the way for precise genome manipulation using the tree shrew.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。