3D printed controllable microporous scaffolds support embryonic development in vitro

3D打印可控微孔支架支持体外胚胎发育

阅读:3
作者:Jia Guo, Yuanyuan Li, Zili Gao, Jiawei Lyu, Wenli Liu, Yongchao Duan, Lixun Zhou, Qi Gu

Abstract

Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the "black box". 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo-scaffold attachments. T-positive cells and FOXA2-positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。