Characterization of dorsal root ganglion neurons cultured on silicon micro-pillar substrates

在硅微柱基底上培养的背根神经节神经元的表征

阅读:6
作者:Tihana Repić, Katarina Madirazza, Ezgi Bektur, Damir Sapunar

Abstract

Our study focuses on characterization of dorsal root ganglion (DRG) neurons cultured on silicon micro-pillar substrates (MPS) with the ultimate goal of designing micro-electrode arrays (MEAs) for successful electrophysiological recordings of DRG neurons. Adult and neonatal DRG neurons were cultured on MPS and glass coverslips for 7 days in vitro. DRG neuronal distribution and morphometric analysis, including neurite alignment and length, was performed on MPS areas with different pillar width and spacing. We showed that MPS provide an environment for growth of adult and neonatal DRG neurons as permissive as control glass surfaces. Neonatal DRG neurons were present on MPS areas with narrow pillar spacing, while adult neurons preferred wider pillar spacing. Compared to the control glass surfaces the neonatal and adult DRG neurons in regions with narrow pillar spacing range developed a smaller number of longer neurites. In the same area, neurites were preferentially oriented along three directional axes at 30°, 90° and 150°. MPS architecture influenced growth directionality of all main DRG neuronal subtypes. We can conclude that specific micro-pillar substrate topography affects the morphology of DRG neurons. This knowledge can enable development of MEAs with precisely defined physical features for various neuroscience applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。