Computational B-cell epitope identification and production of neutralizing murine antibodies against Atroxlysin-I

计算 B 细胞表位识别和抗 Atroxlysin-I 的中和鼠抗体的产生

阅读:8
作者:Edgar Ernesto Gonzalez Kozlova, Loïc Cerf, Francisco Santos Schneider, Benjamin Thomas Viart, Christophe NGuyen, Bethina Trevisol Steiner, Sabrina de Almeida Lima, Franck Molina, Clara Guerra Duarte, Liza Felicori, Carlos Chávez-Olórtegui, Ricardo Andrez Machado-de-Ávila

Abstract

Epitope identification is essential for developing effective antibodies that can detect and neutralize bioactive proteins. Computational prediction is a valuable and time-saving alternative for experimental identification. Current computational methods for epitope prediction are underused and undervalued due to their high false positive rate. In this work, we targeted common properties of linear B-cell epitopes identified in an individual protein class (metalloendopeptidases) and introduced an alternative method to reduce the false positive rate and increase accuracy, proposing to restrict predictive models to a single specific protein class. For this purpose, curated epitope sequences from metalloendopeptidases were transformed into frame-shifted Kmers (3 to 15 amino acid residues long). These Kmers were decomposed into a matrix of biochemical attributes and used to train a decision tree classifier. The resulting prediction model showed a lower false positive rate and greater area under the curve when compared to state-of-the-art methods. Our predictions were used for synthesizing peptides mimicking the predicted epitopes for immunization of mice. A predicted linear epitope that was previously undetected by an experimental immunoassay was able to induce neutralizing-antibody production in mice. Therefore, we present an improved prediction alternative and show that computationally identified epitopes can go undetected during experimental mapping.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。