Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance

马赛替尼拮抗 ATP 结合盒亚家族 G 成员 2 介导的多药耐药性

阅读:10
作者:Rishil J Kathawala, Jun-Jiang Chen, Yun-Kai Zhang, Yi-Jun Wang, Atish Patel, De-Shen Wang, Tanaji T Talele, Charles R Ashby Jr, Zhe-Sheng Chen

Abstract

In this in vitro study, we determined whether masitinib could reverse multidrug resistance (MDR) in cells overexpressing the ATP binding cassette subfamily G member 2 (ABCG2) transporter. Masitinib (1.25 and 2.5 µM) significantly decreases the resistance to mitoxantrone (MX), SN38 and doxorubicin in HEK293 and H460 cells overexpressing the ABCG2 transporter. In addition, masitinib (2.5 µM) significantly increased the intracellular accumulation of [(3)H]-MX, a substrate for ABCG2, by inhibiting the function of ABCG2 and significantly decreased the efflux of [(3)H]-MX. However, masitinib (2.5 µM) did not significantly alter the expression of the ABCG2 protein. In addition, a docking model suggested that masitinib binds within the transmembrane region of a homology-modeled human ABCG2 transporter. Overall, our in vitro findings suggest that masitinib reverses MDR to various anti-neoplastic drugs in HEK293 and H460 cells overexpressing ABCG2 by inhibiting their transport activity as opposed to altering their levels of expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。