A disease-associated mutation in thyroid hormone receptor α1 causes hearing loss and sensory hair cell patterning defects in mice

甲状腺激素受体 α1 的疾病相关突变导致小鼠听力丧失和感觉毛细胞模式缺陷

阅读:5
作者:Corentin Affortit, Fabian Blanc, Jamal Nasr, Jean-Charles Ceccato, Suzy Markossian, Romain Guyot, Jean-Luc Puel, Frédéric Flamant, Jing Wang

Abstract

Resistance to thyroid hormone due to mutations in THRA, which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in Thra that is similar to human THRA mutations (ThraS1/+ mice) and reduces tissue sensitivity to thyroid hormone. Compared to wild-type littermates, ThraS1/+ mice showed moderate high-frequency sensorineural hearing loss as juveniles and increased age-related hearing loss. Ultrastructural examination revealed aberrant orientation of ~20% of sensory outer hair cells (OHCs), as well as increased numbers of mitochondria with fragmented morphology and autophagic vacuoles in both OHCs and auditory nerve fibers. Molecular dissection of the OHC lateral wall components revealed that the potassium ion channel Kcnq4 was aberrantly targeted to the cytoplasm of mutant OHCs. In addition, mutant cochleae showed increased oxidative stress, autophagy, and mitophagy associated with greater age-related cochlear cell damage, demonstrating that TRα1 is required for proper development of OHCs and for maintenance of OHC function. These findings suggest that patients with THRA mutations may present underdiagnosed, mild hearing loss and may be more susceptible to age-related hearing loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。