Structure-guided combination therapy to potently improve the function of mutant CFTRs

结构引导联合疗法有效改善突变 CFTR 的功能

阅读:6
作者:Guido Veit, Haijin Xu, Elise Dreano, Radu G Avramescu, Miklos Bagdany, Lenore K Beitel, Ariel Roldan, Mark A Hancock, Cecilia Lay, Wei Li, Katelin Morin, Sandra Gao, Puiying A Mak, Edward Ainscow, Anthony P Orth, Peter McNamara, Aleksander Edelman, Saul Frenkiel, Elias Matouk, Isabelle Sermet-Gaudel

Abstract

Available corrector drugs are unable to effectively rescue the folding defects of CFTR-ΔF508 (or CFTR-F508del), the most common disease-causing mutation of the cystic fibrosis transmembrane conductance regulator, a plasma membrane (PM) anion channel, and thus to substantially ameliorate clinical phenotypes of cystic fibrosis (CF). To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutant expression and function at the PM. High-throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at nucleotide-binding domain (NBD1), NBD2 and their membrane-spanning domain (MSD) interfaces. Although individually these compounds marginally improve ΔF508-CFTR folding efficiency, function and stability, their combinations lead to ~50-100% of wild-type-level correction in immortalized and primary human airway epithelia and in mouse nasal epithelia. Likewise, corrector combinations were effective against rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。