Acylated ghrelin protects aorta damage post-MI via activation of eNOS and inhibition of angiotensin-converting enzyme induced activation of NAD(P)H-dependent oxidase

酰化生长素释放肽通过激活 eNOS 和抑制血管紧张素转换酶诱导的 NAD(P)H 依赖性氧化酶的激活来保护心肌梗死后主动脉损伤

阅读:7
作者:Refaat A Eid, Attalla Farag El-Kott, Mohamed Samir Ahmed Zaki, Muhammad Alaa Eldeen, Fahaid H Al-Hashem, Mahmoud A Alkhateeb, Mohammed Alassiri, Hussain Aldera

Abstract

NAD(P)H dependent oxidase derived-reactive oxygen species (ROS) due to activation of the renin-angiotensin-aldosterone system (RAAS) in blood vessels postmyocardial infarction MI or during the HF leads to endothelium dysfunction and enhanced apoptosis. Acylated ghrelin (AG) is a well-reported cardioprotective and antiapoptotic agent for the heart. AG receptors are widely distributed in most of blood vessels, suggesting a role in the regulation of endothelial function and survival. This study investigated if AG can protect aorta of rats' postmyocardial infarction (MI)-induced damage and endothelial dysfunction. Adult male rats were divided into four groups of (1) Sham, (2) Sham + AG, (3) MI, and (4) MI + AG. Vehicle (normal saline) or AG (100 µ/kg) was administered to rats for 21 consecutive days, after which, numerous biochemical markers were detected by blot. Both histological and electron microscope studies were carried on aortic samples from MI-induced rats. AG increased protein levels of both total and phosphorylated forms of endothelial nitric oxide synthase (eNOS and p-eNOS, respectively). Only in MI-treated rats, AG prevented the decreases in the levels of reduced glutathione (GSH) and superoxide dismutase (SOD) and lowered levels of malondialdehyde (MDA) and glutathione disulfide (GSSG). Concomitantly, it lowered the increased protein levels of angiotensin-converting enzyme (ACE), p22phox and cleaved caspase-3 and prevented the aorta histological and ultrustructural abnormalities induced by MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。