Nanopore Sequencing and Hi-C Based De Novo Assembly of Trachidermus fasciatus Genome

纳米孔测序和基于 Hi-C 的松鱼基因组从头组装

阅读:10
作者:Gangcai Xie, Xu Zhang, Feng Lv, Mengmeng Sang, Hairong Hu, Jinqiu Wang, Dong Liu

Abstract

Trachidermus fasciatus is a roughskin sculpin fish widespread across the coastal areas of East Asia. Due to environmental destruction and overfishing, the population of this species is under threat. In order to protect this endangered species, it is important to have the genome sequenced. Reference genomes are essential for studying population genetics, domestic farming, and genetic resource protection. However, currently, no reference genome is available for Trachidermus fasciatus, and this has greatly hindered the research on this species. In this study, we integrated nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to thoroughly assemble the Trachidermus fasciatus genome. Our results provided a chromosome-level high-quality genome assembly with a predicted genome size of 542.6 Mbp (2n = 40) and a scaffold N50 of 24.9 Mbp. The BUSCO value for genome assembly completeness was higher than 96%, and the single-base accuracy was 99.997%. Based on EVM-StringTie genome annotation, a total of 19,147 protein-coding genes were identified, including 35,093 mRNA transcripts. In addition, a novel gene-finding strategy named RNR was introduced, and in total, 51 (82) novel genes (transcripts) were identified. Lastly, we present here the first reference genome for Trachidermus fasciatus; this sequence is expected to greatly facilitate future research on this species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。