Up-regulation of LINC00665 contributes to the progression of glioma and correlates with its MRI characteristics

LINC00665 的上调促进胶质瘤进展并与其 MRI 特征相关

阅读:5
作者:Wangsheng Chen, Lan Hong, Changlong Hou, Genlin Zong, Jianhua Zhang

Background

LncRNA LINC00665 partakes in controlling the malignant phenotype of cancer cells, but its role in glioma and the related regulatory mechanism remain uncertain.

Conclusion

LINC00665 functions as an oncogenic lncRNA in glioma, to accelerate glioma progression by modulating miR-129-5p and increasing HMGB1 expression.

Methods

RT-PCR was exploited to examine LINC00665 expression. The relationships among the LINC00665 expression, the clinicopathologic values and magnetic resonance imaging (MRI) characteristics of glioma were analyzed. The multiplication, movement, and aggressiveness of glioma cell lines were evaluated by CCK-8, EdU, and Transwell experiments after constructing LINC00665 overexpression and LINC00665 knockdown cell models. A dual-luciferase reporter gene experiment and RIP experiment were executed to validate the interactions between LINC00665 and miR-129-5p, and between miR-129-5p and HMGB1. Western blot and RT-PCR were conducted to find the impact of LINC00665 and miR-129-5p on HMGB1 expression. Nude mouse model was also constructed to examine the impact of LINC00665 on multiplication and aggressiveness of glioma cells in vivo.

Results

LINC00665 expression was markedly increased in glioma. High LINC00665 expression in glioma was closely linked to larger tumor diameter, higher pathologic grade, heterogeneous MRI signal of the tumor, increased peritumoral edema, and stronger MRI enhancement characteristics. LINC00665 overexpression facilitated the malignant behavior of glioma cells, while LINC00665 knockdown played the reverse role. Mechanistically, LINC00665 could decoy miR-129-5p, and indirectly increased HMGB1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。