Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity

大型人类 iPSC 文库中的转录变异性分析揭示了异质性的遗传和非遗传决定因素

阅读:7
作者:Ivan Carcamo-Orive, Gabriel E Hoffman, Paige Cundiff, Noam D Beckmann, Sunita L D'Souza, Joshua W Knowles, Achchhe Patel, Dimitri Papatsenko, Fahim Abbasi, Gerald M Reaven, Sean Whalen, Philip Lee, Mohammad Shahbazi, Marc Y R Henrion, Kuixi Zhu, Sven Wang, Panos Roussos, Eric E Schadt, Gaurav Pandey

Abstract

Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。