The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration

使用富含血小板和缺乏血小板的血浆来增强骨骼成肌细胞的分化:对使用自体血液制品进行肌肉再生的意义

阅读:6
作者:Olga Miroshnychenko, Wen-Teh Chang, Jason L Dragoo

Background

Platelet-rich plasma (PRP) has been used to augment tissue repair and regeneration after musculoskeletal injury. However, there is increasing clinical evidence that PRP does not show a consistent clinical effect.

Conclusion

PPP and leukocyte-poor PRP preparations subjected to a second spin to remove the platelets led to induction of myoblast cells into the muscle differentiation pathway, whereas unmodified leukocyte-poor PRP led to myoblast proliferation. Clinical relevance: These results indicate that traditionally formulated PRP may not be appropriate to induce muscle regeneration. Laboratory evidence suggests that PPP or non-neutrophil-containing PRPss, subjected to an additional spin to remove platelets, should be used to stimulate myoblast differentiation, which is necessary for skeletal muscle regeneration. Clinical studies will be required to confirm the effect of these biologics on muscle regeneration.

Methods

Blood from 7 human donors was individually processed to simultaneously create leukocyte-poor fractions: PRP, Mod-PRP, PPP, and secondarily spun PRP and Mod-PRP (PRPss and Mod-PRPss, respectively). Mod-PRP was produced by removing TGF-β1 and MSTN from PRP using antibodies attached to sterile beads, while a second-stage centrifugal spin of PRP was performed to remove platelets. The biologics were individually added to cell culture groups. Analysis for induction into myoblast differentiation pathways included Western blot analysis, reverse-transcription polymerase chain reaction, and immunohistochemistry, as well as confocal microscopy to assess polynucleated myotubule formation.

Results

HSMMs cultured with PRP showed an increase in proliferation but no evidence of differentiation. Western blot analysis confirmed that MSTN and TGF-β1 could be decreased in Mod-PRP using antibody-coated beads, but this modification mildly improved myoblast differentiation. However, cell culture with PPP, PRPss, and Mod-PRPss led to a decreased proliferation rate but a significant induction of myoblast differentiation verified by increased multinucleated myotubule formation and myosin heavy chain expression (mean 8-fold change in mRNA level; P < .05), which was comparable with 2% horse serum, the positive control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。