β-Catenin overexpression in the metanephric mesenchyme leads to renal dysplasia genesis via cell-autonomous and non-cell-autonomous mechanisms

β-Catenin 在后肾间充质中的过度表达通过细胞自主和非细胞自主机制导致肾脏发育不良的发生

阅读:6
作者:Sanjay Sarin, Felix Boivin, Aihua Li, Janice Lim, Bruno Svajger, Norman D Rosenblum, Darren Bridgewater

Abstract

Renal dysplasia, a developmental disorder characterized by defective ureteric branching morphogenesis and nephrogenesis, ranks as one of the major causes of renal failure among the pediatric population. Herein, we demonstrate that the levels of activated β-catenin are elevated in the nuclei of ureteric, stromal, and mesenchymal cells within dysplastic human kidney tissue. By using a conditional mouse model of mesenchymal β-catenin overexpression, we identify two novel signaling pathways mediated by β-catenin in the development of renal dysplasia. First, the overexpression of β-catenin within the metanephric mesenchyme leads to ectopic and disorganized branching morphogenesis caused by β-catenin directly binding Tcf/lef consensus binding sites in the Gdnf promoter and up-regulating Gdnf transcription. Second, β-catenin overexpression in the metanephric mesenchyme leads to elevated levels of transcriptionally active β-catenin in the ureteric epithelium. Interestingly, this increase of β-catenin-mediated transcription results from a novel Ret/β-catenin signaling pathway. Consistent with these findings, analysis of human dysplastic renal tissue demonstrates that undifferentiated mesenchymal cells expressing high levels of β-catenin also express increased GDNF. Furthermore, dysplastic ureteric tubules that were surrounded by high levels of GDNF also exhibited increased levels of activated β-catenin. Together, these data support a model in which the elevation of β-catenin in the metanephric mesenchyme results in cell-autonomous and non-cell-autonomous events that lead to the genesis of renal dysplasia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。