Defining HIV-1 Envelope N-Glycan Microdomains through Site-Specific Heterogeneity Profiles

通过站点特定的异质性概况定义 HIV-1 包膜 N-聚糖微区

阅读:5
作者:Audra A Hargett #, Qing Wei #, Barbora Knoppova, Stacy Hall, Zhi-Qiang Huang, Amol Prakash, Todd J Green, Zina Moldoveanu, Milan Raska, Jan Novak, Matthew B Renfrow

Abstract

The HIV-1 envelope (Env) glycans shield the surface of Env from the immune system and form integral interactions important for a functional Env. To understand how individual N-glycosylation sites (NGS) coordinate to form a dynamic shield and evade the immune system through mutations, we tracked 20 NGS in Env from HIV-transmitted/founder (T/F) and immune escape variants and their mutants involving the N262 glycan. NGS were profiled in a site-specific manner using a high-resolution mass spectrometry (MS)-based workflow. Using this site-specific quantitative heterogeneity profiling, we empirically characterized the interdependent NGS of a microdomain in the high-mannose patch (HMP). The changes (shifts) in NGS heterogeneity between the T/F and immune escape variants defined a range of NGS that we further probed for exclusive combinations of sequons in the HMP microdomain using the Los Alamos National Laboratory HIV sequence database. The resultant sequon combinations, including the highly conserved NGS N262, N448, and N301, created an immune escape map of the conserved and variable sequons in the HMP microdomain. This report provides details on how some clustered NGS form microdomains that can be identified and tracked across Env variants. These microdomains have a limited number of N-glycan-sequon combinations that may allow the anticipation of immune escape variants.IMPORTANCE The Env protein of HIV is highly glycosylated, and the sites of glycosylation can change as the virus mutates during immune evasion. Due to these changes, the glycan location and heterogeneity of surrounding N-glycosylation sites can be altered, resulting in exposure of different glycan or proteoglycan surfaces while still producing a viable HIV variant. These changes present a need for vaccine developers to identify Env variants with epitopes most likely to induce durable protective responses. Here we describe a means of anticipating HIV-1 immune evasion by dividing Env into N-glycan microdomains that have a limited number of N-glycan sequon combinations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。