The (R)-enantiomer of the 6-chromanol derivate SUL-121 improves renal graft perfusion via antagonism of the α1-adrenoceptor

6-色满醇衍生物 SUL-121 的 (R)-对映体通过拮抗 α1-肾上腺素能受体改善肾移植灌注

阅读:6
作者:D Nakladal, H Buikema, A Reyes Romero, S P H Lambooy, J Bouma, G Krenning, P Vogelaar, A C van der Graaf, M R Groves, J Kyselovic, R H Henning, L E Deelman

Abstract

SUL-compounds are protectants from cold-induced ischemia and mitochondrial dysfunction. We discovered that adding SUL-121 to renal grafts during warm machine reperfusion elicits a rapid improvement in perfusion parameters. Therefore, we investigate the molecular mechanisms of action in porcine intrarenal arteries (PIRA). Porcine kidneys were stored on ice overnight and perfusion parameters were recorded during treatment with SUL-compounds. Agonist-induced vasoconstriction was measured in isolated PIRA after pre-incubation with SUL-compounds. Receptor binding and calcium transients were assessed in α1-adrenoceptor (α1-AR) transgenic CHO cells. Molecular docking simulation was performed using Schrödinger software. Renal pressure during warm reperfusion was reduced by SUL-121 (-11.9 ± 2.50 mmHg) and its (R)-enantiomer SUL-150 (-13.2 ± 2.77 mmHg), but not by the (S)-enantiomer SUL-151 (-1.33 ± 1.26 mmHg). Additionally, SUL-150 improved renal flow (16.21 ± 1.71 mL/min to 21.94 ± 1.38 mL/min). SUL-121 and SUL-150 competitively inhibited PIRA contraction responses to phenylephrine, while other 6-chromanols were without effect. SUL-150 similarly inhibited phenylephrine-induced calcium influx and effectively displaced [7-Methoxy-3H]-prazosin in CHO cells. Docking simulation to the α1-AR revealed shared binding characteristics between prazosin and SUL-150. SUL-150 is a novel α1-AR antagonist with the potential to improve renal graft perfusion after hypothermic storage. In combination with previously reported protective effects, SUL-150 emerges as a novel protectant in organ transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。