Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field

极低频电磁场作用下秀丽隐杆线虫氧化应激反应与三羧酸循环及前列腺素 E2 变化的耦合

阅读:9
作者:Yongyan Sun, Zhenhua Shi, Yahong Wang, Chao Tang, Yanyan Liao, Chuanjun Yang, Peng Cai

Conclusions

Our results suggested that exposure to 50 Hz, 3 mT ELF-EMF in C. elegans can elicit disruptions of the TCA cycle metabolism and PGE2 formation, coupling ELF-EMF-induced oxidative stress responses. Our study probably will attract increasing attentions to the controllable application of ELF-EMF associated with health and disease.

Methods

Worms were exposed to ELF-EMF from the egg stage until reaching the fourth larva (L4) stage. After exposure, expressions of the tricarboxylic acid (TCA) cycle enzymes were examined by qRT-PCR and western blot analysis. Two lipid metabolites were detected by GC-MS. Reactive oxygen species (ROS) level was detected by dichlorofluorescein staining and worm antioxidant system was investigated by enzymatic activity analysis, including detection of the superoxide dismutase and catalase (CAT) activity and the total antioxidant capacity (T-AOC).

Purpose

With all-pervasive presence of extremely low-frequency electromagnetic field (ELF-EMF) in modern life, ELF-EMF has been regarded as an essential factor which may induce changes in many organisms. The objective of the present study was to investigate the physiological responses of Caenorhabditis elegans (C. elegans) to 50 Hz, 3 mT ELF-EMF exposure. Materials and

Results

The TCA cycle enzyme, fumarase was found with decreased expression under ELF-EMF exposure. And arachidonic acid (ArA) and prostaglandin E2(PGE2) showed elevated concentrations, with increased expression of prostaglandin E2 synthase (PGES-2) in ELF-EMF exposed worms. Significant elevation of ROS level was identified accompanied with the significant depression of T-AOC in response to ELF-EMF. Conclusions: Our results suggested that exposure to 50 Hz, 3 mT ELF-EMF in C. elegans can elicit disruptions of the TCA cycle metabolism and PGE2 formation, coupling ELF-EMF-induced oxidative stress responses. Our study probably will attract increasing attentions to the controllable application of ELF-EMF associated with health and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。