Magnetothermal heating facilitates the cryogenic recovery of stem cell-laden alginate-Fe3O4 nanocomposite hydrogels

磁热加热促进载干细胞的海藻酸盐-Fe3O4 纳米复合水凝胶的低温回收

阅读:10
作者:Xiaozhang Zhang, Gang Zhao, Yuan Cao, Zeeshan Haider, Meng Wang, Jianping Fu

Abstract

Constructs of magnetic nanocomposite hydrogels microencapsulated with stem cells are of great interest as smart materials for tissue engineering and regenerative medicine. Due to the short shelf life of such biocomposites at an ambient temperature, their long-term storage and banking at cryogenic temperatures are essential for the "off-the-shelf" availability of such biocomposites for widespread clinical applications. However, high-quality cryogenic recovery of stem cell-nanocomposite hydrogel constructs has not yet been achieved due to the damage to cells and/or microstructures of hydrogel constructs caused by ice formation, particularly during warming from cryogenic temperatures. Herein, stem cell-magnetic nanocomposite hydrogel constructs, which have an inherent magnetothermal property provided by embedded magnetic nanoparticles, are explored to achieve ultra-rapid cryogenic warming. The binding of water molecules by the hydrogel combined with the magnetothermal heating greatly suppressed ice formation during both cryogenic cooling and warming. Thus, the cryogenic recovery of nanocomposite hydrogel constructs with intact microstructures and fully functional stem cells from ultra-low temperatures was successfully achieved. We further demonstrated that magnetic nanocomposite hydrogels microencapsulated with stem cells could be conveniently manipulated for a self-assembled 3D culture. Together, we have developed a highly efficient and easy-to-perform approach for the cryogenic recovery of stem cell-encapsulated magnetic nanocomposite hydrogel constructs. Our results will facilitate the applications of such stem cell-magnetic nanocomposite hydrogels in regenerative medicine and tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。