Versatile-in-All-Trades: Multifunctional Boron-Doped Calcium-Deficient Hydroxyapatite Directs Immunomodulation and Regeneration

用途广泛:多功能硼掺杂缺钙羟基磷灰石可直接调节免疫和再生

阅读:7
作者:Ahmet Engin Pazarçeviren, Sema Akbaba, Zafer Evis, Ayşen Tezcaner

Abstract

Osseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method. By synthesis of boron-doped calcium-deficient hydroxyapatite (BcHA), we expected to obtain an osteoimmunomodulatory and regenerative nanoreinforcement. BcHA was found to possess a pure HA phase, a greater surface area (66.41 m2/g, p = 0.028), and cumulative concentrations of Ca (207.87 ± 6.90 mg/mL, p < 0.001) and B (112.70 ± 11.79 mg/mL, p < 0.001) released in comparison to cHA. Osteogenic potential of BcHA was analyzed using human fetal osteoblasts. BcHA resulted in a drastic increase in the ALP activity (1.11 ± 0.11 mmol/gDNA·min, p < 0.001), biomineralization rate, and osteogenic gene expressions compared to cHA. BcHA angiogenic potential was investigated using human umbilical cord vein endothelial cells. Significantly, the highest VEGF-A release (1111.14 ± 87.82 in 4 h, p = 0.009) and angiogenic gene expressions were obtained for BcHA-treated samples. These samples were also observed to induce a more prominent and highly branched tube network. Finally, inflammatory and inflammasome responses toward BcHA were elucidated using human monocyte-derived macrophages differentiated from THP-1s. BcHA exhibited lower CAS-1 release (50.18 ± 5.52 μg/gDNA μg/gDNA) and higher IL-10 release (126.97 ± 15.05 μg/gDNA) than cHA. In addition, BcHA treatment led to increased expression of regenerative genes such as VEGF-A, RANKL, and BMP-2. In vitro results demonstrated that BcHA has tremendous osteogenic, angiogenic, and immunomodulatory potential to be employed as a "versatile-in-all-trades" modality in various bone tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。