Bioprocess development of 2, 3-butanediol production using agro-industrial residues

利用农业工业残余物生产2,3-丁二醇的生物工艺开发

阅读:6
作者:Sulfath Hakkim Hazeena, Narasinha J Shurpali, Henri Siljanen, Reijo Lappalainen, Puthiyamdam Anoop, Velayudhanpillai Prasannakumari Adarsh, Raveendran Sindhu, Ashok Pandey, Parameswaran Binod

Abstract

The valorization of agricultural and industrial wastes for fuel and chemical production benefits environmental sustainability. 2, 3-Butanediol (2,3-BDO) is a value-added platform chemical covering many industrial applications. Since the global market is increasing drastically, production rates have to increase. In order to replace the current petroleum-based 2,3-BDO production, renewable feedstock's ability has been studied for the past few decades. This study aims to find an improved bioprocess for producing 2,3-BDO from agricultural and industrial residues, consequently resulting in a low CO2 emission bioprocess. For this, screening of 13 different biomass samples for hydrolyzable sugars has been done. Alkali pretreatment has been performed with the processed biomass and enzyme hydrolysis performed using commercial cellulase. Among all biomass hydrolysate oat hull and spruce bark biomass could produce the maximum amount of total reducing sugars. Later oat hull and spruce bark biomass with maximum hydrolyzable sugars have been selected for submerged fermentation studies using Enterobacter cloacae SG1. After fermentation, 37.59 and 26.74 g/L of 2,3-BDO was obtained with oat hull and spruce bark biomass, respectively. The compositional analysis of each step of biomass processing has been performed and changes in each component have been evaluated. The compositional analysis has revealed that biomass composition has changed significantly after pretreatment and hydrolysis leading to a remarkable release of sugars which can be utilized by bacteria for 2,3-BDO production. The results have been found to be promising, showing the potential of waste biomass residues as a low-cost raw material for 2,3-BDO production and thus a new lead in an efficient waste management approach for less CO2 emission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。