UV-Pre-Treated and Protein-Adsorbed Titanium Implants Exhibit Enhanced Osteoconductivity

经紫外线预处理和蛋白质吸附的钛植入物表现出增强的骨传导性

阅读:7
作者:Yoshihiko Sugita, Juri Saruta, Takashi Taniyama, Hiroaki Kitajima, Makoto Hirota, Takayuki Ikeda, Takahiro Ogawa

Abstract

Titanium materials are essential treatment modalities in the medical field and serve as a tissue engineering scaffold and coating material for medical devices. Thus, there is a significant demand to improve the bioactivity of titanium for therapeutic and experimental purposes. We showed that ultraviolet light (UV)-pre-treatment changed the protein-adsorption ability and subsequent osteoconductivity of titanium. Fibronectin (FN) adsorption on UV-treated titanium was 20% and 30% greater after 1-min and 1-h incubation, respectively, than that of control titanium. After 3-h incubation, FN adsorption on UV-treated titanium remained 30% higher than that on the control. Osteoblasts were cultured on titanium disks after 1-h FN adsorption with or without UV-pre-treatment and on titanium disks without FN adsorption. The number of attached osteoblasts during the early stage of culture was 80% greater on UV-treated and FN-adsorbed (UV/FN) titanium than on FN-adsorbed (FN) titanium; osteoblasts attachment on UV/FN titanium was 2.6- and 2.1-fold greater than that on control- and UV-treated titanium, respectively. The alkaline phosphatase activity of osteoblasts on UV/FN titanium was increased 1.8-, 1.8-, and 2.4-fold compared with that on FN-adsorbed, UV-treated, and control titanium, respectively. The UV/FN implants exhibited 25% and 150% greater in vivo biomechanical strength of bone integration than the FN- and control implants, respectively. Bone morphogenetic protein-2 (BMP-2) adsorption on UV-treated titanium was 4.5-fold greater than that on control titanium after 1-min incubation, resulting in a 4-fold increase in osteoblast attachment. Thus, UV-pre-treatment of titanium accelerated its protein adsorptivity and osteoconductivity, providing a novel strategy for enhancing its bioactivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。