Accelerated and Improved Vascular Maturity after Transplantation of Testicular Tissue in Hydrogels Supplemented with VEGF- and PDGF-Loaded Nanoparticles

睾丸组织移植到含有 VEGF 和 PDGF 纳米粒子的水凝胶中后血管成熟度加快并改善

阅读:4
作者:Federico Del Vento, Jonathan Poels, Maxime Vermeulen, Bernard Ucakar, Maria Grazia Giudice, Marc Kanbar, Anne des Rieux, Christine Wyns

Abstract

Avascular transplantation of frozen-thawed testicular tissue fragments represents a potential future technique for fertility restoration in boys with cancer. A significant loss of spermatogonia was observed in xeno-transplants of human tissue most likely due to the hypoxic period before revascularization. To reduce the effect of hypoxia-reoxygenation injuries, several options have already been explored, like encapsulation in alginate hydrogel and supplementation with nanoparticles delivering a necrosis inhibitor (NECINH) or VEGF. While these approaches improved short-term (5 days) vascular surfaces in grafts, neovessels were not maintained up to 21 days; i.e., the time needed for achieving vessel stabilization. To better support tissue grafts, nanoparticles loaded with VEGF, PDGF and NECINH were developed. Testicular tissue fragments from 4-5-week-old mice were encapsulated in calcium-alginate hydrogels, either non-supplemented (control) or supplemented with drug-loaded nanoparticles (VEGF-nanoparticles; VEGF-nanoparticles + PDGF-nanoparticles; NECINH-nanoparticles; VEGF-nanoparticles + NECINH-nanoparticles; and VEGF-nanoparticles + PDGF-nanoparticles + NECINH-nanoparticles) before auto-transplantation. Grafts were recovered after 5 or 21 days for analyses of tissue integrity (hematoxylin-eosin staining), spermatogonial survival (immuno-histo-chemistry for promyelocytic leukemia zinc finger) and vascularization (immuno-histo-chemistry for α-smooth muscle actin and CD-31). Our results showed that a combination of VEGF and PDGF nanoparticles increased vascular maturity and induced a faster maturation of vascular structures in grafts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。