Silencing of LncRNA steroid receptor RNA activator attenuates polycystic ovary syndrome in mice

沉默 LncRNA 类固醇受体 RNA 激活剂可减轻小鼠多囊卵巢综合征

阅读:4
作者:Yan Li, Wanqiu Zhao, Haixu Wang, Chen Chen, Dongmei Zhou, Shengnan Li, Xiaohong Zhang, Haibo Zhao, Dangxia Zhou, Biliang Chen

Background

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and has a prevalence of 1 in 15 women worldwide. This study aims to investigate the role of lncRNA SRA in the pathological processes of polycystic ovary syndrome (PCOS).

Conclusion

Silencing of lncRNA Steroid Receptor RNA Activator (SRA) attenuates polycystic ovary syndrome (PCOS) in mice. LncRNA SRA plays important roles in the development of PCOS.

Methods

Twenty five-day old female C57BL/6 mice received subcutaneous injection of 60 mg/kg dehydroepiandrosterone for 20 days to induce PCOS. Lentivirus containing lncRNA SRA-specific shRNA was subcapsularly injected into the ovaries of PCOS mice. Granulosa cell was primary cultured to explore the mechanism of DHEA-induced inflammatory responses. H&E staining was used to examine the histological changes of ovaries. ELISA was used to assess serum insulin level and proinflammatory cytokines and angiogenetic factors contents in ovary tissue. The expression levels of LncRNA SRA and proteins involved in the NF-κB signaling pathway were detected through Quantitative real-time PCR and Western blot. The nuclear translocation of NF-κB was observed by immunofluorescence and the activity of NF-κB-DNA binding was detected using EMSA.

Results

Silencing of lncRNA SRA changed insulin release, attenuated ovary injury and reduced the production of angiogenetic factors in the PCOS mice. In addition, shRNA targeting lncRNA SRA inhibited DHEA-induced pro-inflammatory cytokines production and NF-κB nuclear translocation in the ovary of PCOS mice and primary granulosa cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。