OGA is associated with deglycosylation of NONO and the KU complex during DNA damage repair

OGA 与 DNA 损伤修复过程中 NONO 和 KU 复合物的去糖基化有关

阅读:7
作者:Yaqi Cui, Rong Xie, Xuefang Zhang, Yi Liu, Yixuan Hu, Yuan Li, Xiuhua Liu, Xiaochun Yu, Chen Wu

Abstract

Accumulated evidence shows that OGT-mediated O-GlcNAcylation plays an important role in response to DNA damage repair. However, it is unclear if the "eraser" O-GlcNAcase (OGA) participates in this cellular process. Here, we examined the molecular mechanisms and biological functions of OGA in DNA damage repair, and found that OGA was recruited to the sites of DNA damage and mediated deglycosylation following DNA damage. The recruitment of OGA to DNA lesions is mediated by O-GlcNAcylation events. Moreover, we have dissected OGA using deletion mutants and found that C-terminal truncated OGA including the pseudo HAT domain was required for the recruitment of OGA to DNA lesions. Using unbiased protein affinity purification, we found that the pseudo HAT domain was associated with DNA repair factors including NONO and the Ku70/80 complex. Following DNA damage, both NONO and the Ku70/80 complex were O-GlcNAcylated by OGT. The pseudo HAT domain was required to recognize NONO and the Ku70/80 complex for their deglycosylation. Suppression of the deglycosylation prolonged the retention of NONO at DNA lesions and delayed NONO degradation on the chromatin, which impaired non-homologus end joining (NHEJ). Collectively, our study reveals that OGA-mediated deglycosylation plays a key role in DNA damage repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。