Foetal hypoxia impacts methylome and transcriptome in developmental programming of heart disease

胎儿缺氧影响心脏病发育编程中的甲基化组和转录组

阅读:6
作者:Lei Huang, Xin Chen, Chiranjib Dasgupta, Wanqiu Chen, Rui Song, Charles Wang, Lubo Zhang

Aims

Antenatal hypoxia negatively impacts foetal heart development, and increases the risk of heart disease later in life. The molecular mechanisms remain largely elusive. Here, we conducted a genome-wide analysis to study the impact of antenatal hypoxia on DNA methylome and transcriptome profiling in foetal and adult offspring hearts.

Conclusion

Our study provides an initial framework and new insights into foetal hypoxia-mediated epigenetic programming of pro-inflammatory phenotype in the heart development, linking antenatal stress, and developmental programming of heart vulnerability to disease later in life.

Results

Pregnant rats were treated with normoxia or hypoxia (10.5% O2) from Day 15 to Day 21 of gestation. Hearts were isolated from near-term foetuses and 5-month-old male and female offsprings, and DNA methylome and RNA-seq were performed. Methylome data shows a sharp dip in CpG methylation centred at the transcription start site (TSS). CpG islands (CGIs) and CpG island shores (CGSs) within 10 kb upstream of the TSS are hypomethylated, compared with CGIs and CGSs within gene bodies. Combining transcriptome, data indicate an inverse relation between gene expression and CpG methylation around the TSS. Of interest, antenatal hypoxia induces opposite changes in methylation patterns in foetal and adult hearts, with hypermethylation in the foetus and hypomethylation in the adult. Also, there is significant sex dimorphism of changes in gene expression patterns in the adult offspring heart. Notably, pathway analysis indicates that enrichment of inflammation-related pathways are significantly greater in the adult male heart than those in the female heart.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。