Role of female-predominant MYB39-bHLH13 complex in sexually dimorphic accumulation of taxol in Taxus media

雌性优势 MYB39-bHLH13 复合体在曼地亚红豆杉中两性紫杉醇积累中的作用

阅读:7
作者:Chunna Yu, Jiefang Huang, Qicong Wu, Chengchao Zhang, Xiao-Lin Li, Xinyun Xu, Shangguo Feng, Xiaori Zhan, Zhehao Chen, Huizhong Wang, Chenjia Shen

Abstract

Taxus trees are major natural sources for the extraction of taxol, an anti-cancer agent used worldwide. Taxus media is a dioecious woody tree with high taxol yield. However, the sexually dimorphic accumulation of taxoids in T. media is largely unknown. Our study revealed high accumulation of taxoids in female T. media trees using a UPLC-MS/MS method. Thereafter, many differential metabolites and genes between female and male T. media trees were identified using metabolomic and transcriptomic analyses, respectively. Most of the taxol-related genes were predominantly expressed in female trees. A female-specific R2R3-MYB transcription factor gene, TmMYB39, was identified. Furthermore, bimolecular fluorescence complementation and yeast two-hybrid assays suggested the potential interaction between TmMYB39 and TmbHLH13. Several taxol biosynthesis-related promoter sequences were isolated and used for the screening of MYB recognition elements. The electrophoretic mobility shift assay indicated that TmMYB39 could bind to the promoters of the GGPPS, T10OH, T13OH, and TBT genes. Interaction between TmMYB39 and TmbHLH13 transactivated the expression of the GGPPS and T10OH genes. TmMYB39 might function in the transcriptional regulation of taxol biosynthesis through an MYB-bHLH module. Our results give a potential explanation for the sexually dimorphic biosynthesis of taxol in T. media.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。