Hypoxia Induced by Cobalt Chloride Triggers Autophagic Apoptosis of Human and Mouse Drug-Resistant Glioblastoma Cells through Targeting the PI3K-AKT-mTOR Signaling Pathway

氯化钴诱导的缺氧通过靶向 PI3K-AKT-mTOR 信号通路引发人类和小鼠耐药胶质母细胞瘤细胞自噬凋亡

阅读:8
作者:Yuan-Wen Lee, Yih-Giun Cherng, Shun-Tai Yang, Shing-Hwa Liu, Ta-Liang Chen, Ruei-Ming Chen

Abstract

Glioblastoma multiforme (GBM) is the most aggressive brain tumor. Drug resistance mainly drives GBM patients to poor prognoses because drug-resistant glioblastoma cells highly defend against apoptotic insults. This study was designed to evaluate the effects of cobalt chloride (CoCl2) on hypoxic stress, autophagy, and resulting apoptosis of human and mouse drug-resistant glioblastoma cells. Treatment of drug-resistant glioblastoma cells with CoCl2 increased levels of hypoxia-inducible factor- (HIF-) 1α and triggered hypoxic stress. In parallel, the CoCl2-induced hypoxia decreased mitochondrial ATP synthesis, cell proliferation, and survival in chemoresistant glioblastoma cells. Interestingly, CoCl2 elevated the ratio of light chain (LC)3-II over LC3-I in TMZ-resistant glioblastoma cells and subsequently induced cell autophagy. Analyses by loss- and gain-of-function strategies further confirmed the effects of the CoCl2-induced hypoxia on autophagy of drug-resistant glioblastoma cells. Furthermore, knocking down HIF-1α concurrently lessened CoCl2-induced cell autophagy. As to the mechanisms, the CoCl2-induced hypoxia decreased levels of phosphoinositide 3-kinase (PI3K) and successive phosphorylations of AKT and mammalian target of rapamycin (mTOR) in TMZ-resistant glioblastoma cells. Interestingly, long-term exposure of human chemoresistant glioblastoma cells to CoCl2 sequentially triggered activation of caspases-3 and -6, DNA fragmentation, and cell apoptosis. However, pretreatment with 3-methyladenine, an inhibitor of autophagy, significantly attenuated the CoCl2-induced autophagy and subsequent apoptotic insults. Taken together, this study showed that long-term treatment with CoCl2 can induce hypoxia and subsequent autophagic apoptosis of drug-resistant glioblastoma cells via targeting the PI3K-AKT-mTOR pathway. Thus, combined with traditional prescriptions, CoCl2-induced autophagic apoptosis can be clinically applied as a de novo strategy for therapy of drug-resistant GBM patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。