Quantification and role of innate lymphoid cell subsets in Chronic Obstructive Pulmonary Disease

慢性阻塞性肺病中先天淋巴细胞亚群的量化及其作用

阅读:5
作者:Evy E Blomme, Sharen Provoost, Elise G De Smet, Katrien C De Grove, Hannelore P Van Eeckhoutte, Joyceline De Volder, Philip M Hansbro, Matteo Bonato, Marina Saetta, Sara Ra Wijnant, Fien Verhamme, Guy F Joos, Ken R Bracke, Guy G Brusselle, Tania Maes

Conclusion

The ILC1 subset is increased in COPD patients and correlates with smoking and severity of respiratory symptoms. ILCs also increase upon CS exposure in C57BL/6J mice. In the absence of adaptive immunity, ILCs contribute to CS-induced pro-inflammatory mediator release, but are redundant in CS-induced innate inflammation.

Methods

Lung ILC subsets in COPD and control subjects were quantified using flow cytometry and associated with clinical parameters. Tissue localisation of ILC and T-cell subsets was determined by immunohistochemistry. Mice were exposed to air or cigarette smoke (CS) for 1, 4 or 24 weeks to investigate whether pulmonary ILC numbers and activation are altered and whether they contribute to CS-induced innate inflammatory responses.

Results

Quantification of lung ILC subsets demonstrated that ILC1 frequency in the total ILC population was elevated in COPD and was associated with smoking and severity of respiratory symptoms (COPD Assessment Test [CAT] score). All three ILC subsets localised near lymphoid aggregates in COPD. In the COPD mouse model, CS exposure in C57BL/6J mice increased ILC numbers at all time points, with relative increases in ILC1 in bronchoalveolar lavage (BAL) fluid. Importantly, CS exposure induced increases in neutrophils, monocytes and dendritic cells that remained elevated in Rag2/Il2rg-deficient mice that lack adaptive immune cells and ILCs. However, CS-induced CXCL1, IL-6, TNF-α and IFN-γ levels were reduced by ILC deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。