G-protein Coupled Receptor 34 Promotes Gliomagenesis by Inducing Proliferation and Malignant Phenotype via TGF-Beta/Smad Signaling Pathway

蛋白偶联受体 34 通过 TGF-β/Smad 信号通路诱导增殖和恶性表型,促进胶质瘤形成

阅读:5
作者:Yanhao Cheng, Xueyuan Heng, Fan Feng

Background

G-protein coupled receptor 34 (GPR34) is involved in cell motility, differentiation, and mitosis. GPR34 was reported to be highly expressed and play an oncogenic role in several solid tumors. Here, we investigated the mechanisms underlying how GPR34 promotes glioma progression.

Conclusion

GPR34 enhances the malignancy and carcinogenesis of glioma by promoting an EMT-like process, G1/S phase cell cycle transition, and TGF-β/Smad signaling. Accordingly, GPR34 likely functions as an oncogene in glioma and may represent a potential therapeutic target for this cancer.

Methods

Bioinformatic analysis was performed on RNA-seq and clinical data from the gene expression omnibus (GEO), cancer genome atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. TIMER database and single-sample GSEA (ssGAEA) method were used to investigate the association between the GPR34 expression and immune infiltration level in glioma. Cox regression analysis was employed to ascertain whether the risk signature was an independent prognostic indicator for glioma. The viability and migratory/invasive potential of glioma cells were assessed using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays.

Results

We found that GPR34 expression was positively correlated with immune infiltration level and that high GPR34 level may be associated with poor prognosis in glioma. We further found that GPR34 may serve as an independent prognostic marker and prediction factor for the clinicopathological features of glioma. We showed that knocking down GPR34 attenuated the viability and migratory/invasive capacity of glioma cells (U251 and LN229), while GPR34 overexpression exerted the opposite effects. Additionally, core enrichment in the GSEA analysis indicated that GPR34-mediated gliomagenesis was associated with the cell cycle arrest, epithelial-mesenchymal transition (EMT), and activation of the TGF-β/Smad pathway; furthermore, inhibiting TGF-β/Smad signaling using LY2157299, a TGF-β inhibitor, reversed the oncogenic effects and malignant phenotype associated with GPR34 overexpression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。