Adventitia-derived extracellular matrix hydrogel enhances contractility of human vasa vasorum-derived pericytes via α2 β1 integrin and TGFβ receptor

外膜衍生的细胞外基质水凝胶通过 α2 β1 整合素和 TGFβ 受体增强人类血管滋养管衍生的周细胞的收缩性

阅读:6
作者:Kaitlyn L Wintruba, Jennifer C Hill, Tara D Richards, Yoojin C Lee, David J Kaczorowski, Ibrahim Sultan, Stephen F Badylak, Marie Billaud, Thomas G Gleason, Julie A Phillippi

Abstract

Pericytes are essential components of small blood vessels and are found in human aortic vasa vasorum. Prior work uncovered lower vasa vasorum density and decreased levels of pro-angiogenic growth factors in adventitial specimens of human ascending thoracic aortic aneurysm. We hypothesized that adventitial extracellular matrix (ECM) from normal aorta promotes pericyte function by increasing pericyte contractile function through mechanisms deficient in ECM derived from aneurysmal aortic adventitia. ECM biomaterials were prepared as lyophilized particulates from decellularized adventitial specimens of human and porcine aorta. Immortalized human aortic adventitia-derived pericytes were cultured within Type I collagen gels in the presence or absence of human or porcine adventitial ECMs. Cell contractility index was quantified by measuring the gel area immediately following gelation and after 48 h of culture. Normal human and porcine adventitial ECM increased contractility of pericytes when compared with pericytes cultured in absence of adventitial ECM. In contrast, aneurysm-derived human adventitial ECM failed to promote pericyte contractility. Pharmacological inhibition of TGFβR1 and antibody blockade of α2 β1 integrin independently decreased porcine adventitial ECM-induced pericyte contractility. By increasing pericyte contractility, adventitial ECM may improve microvascular function and thus represents a candidate biomaterial for less invasive and preventative treatment of human ascending aortic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。